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5 Koszul complex and regular local rings

We start with two alternative definitions of the Koszul complex. Recall that a chain complex of R-modules
M,,dM is a sequence of R-modules M; and homomorphisms
aM aM

m+41

coe = My ——> My, —> My — ...

such that the composite of any two consecutive maps is zero. Given two chain complexes of R-modules
M,,d™ and N,,dN, we can form the double complex M, ® N,

l l l

My ®a Ny ¢—— M; ®4 Ny —— Mz ®4 Ny +——

| | |

Mo®a4 Ny —— M;®4 Ny —— Moy®4 Ny +——

| | |

Mo ®4 Ny ¢—— M; ®4 Ny ¢—— Mo ®4 Ny ——

where the horizonal differentials are given by §h = dnj\/{ ®1: M,,®4 N, = M,,—1 ®4 N,, and the vertical
differentials are given by 6* := (—1)™1 ® dY : M,, ®4 N,, = M,, @4 N,,_;. Because of this we see that
each square in the double complex, anti-commutes. This is done on purpose since it allows to define a
chain complex from this double complex as follows. We define the total complexr Tot® (M, ® 4 N,) of the
above tensor double complex to have degree d > 0 part

Tot®(M, @A NJa= €D Mm®a N,
m+n=d

and differential § := 6" + §¥. The fact that the squares in the double complex anti-commute means
that 62 = 0 and so this is indeed a complex. Visually this is just taking diagonal slices in our double
complex along lines of slope —1 and the differentials map one diagonal slice to the previous one in
the only way possible, that is, in each summand you go down and to the left. Here a useful remark
is that the total complex is commutative in the sense that Tot®(M, ®4 N,) and Tot®(N, ®4 M,) are
isomorphic as chain complexes. It is also associative in the sense that Tot@(TotEB (M, ®a N,) ®4 P.) and
Tot® (M, ®4 Tot® (N, ®4 P,)) are isomorphic as chain complexes.

Definition 5.1 (Koszul complex 1). Let A be a ring and = € A. We define the Koszul complex K(z) to
be the complex
0—-A5A—0

given by multiplication by z. Now for z1,...,z, € A, we define the Koszul complex K(z1,...,z,)
inductively by K (x1,22) := Tot® (K (z1) ®4 K(x3)), and
K(z1,...,2,) = Tot®(K(z1,...,20_1) @4 K(2,)).

This definition will be extremely useful when proving stuff about Koszul homology that we define
later.

Definition 5.2 (Koszul complex 2). Given z1,...,z, € A, we define the Koszul complex
=Ky - Ky — -2 K > Kyg—0

where Kj := A and for p > 1 we have K, := \" (-, Ae;), the pth exterior algebra of the free A-module

of rank n, which is the free A-module of rank (Z) with basis {e;, A---Ae, | 1 <iy <idp <--- <ip <nj}

We leave the equivalence of the two definitions as an exercise.



Definition 5.3 (Koszul homology). Let M be an A-module and z1,...,z, € A. The Koszul homology
with coefficients in M is defined by

Hy(z1,...,2n, M) :=Hy(M @4 K(21,...,22))
For a chain complex C, of A-modules, we define the Koszul homology with coefficients in C, to be
Hy(z1,...,2,,C.) = Hy(Tot®(C, @4 K(1,...,2,))).
Remark. An easy check shows that we always have

Ho(z1,...,xn, M) =M/(x1,...,2,)M
Hy(x1,...,xp, M) ={€ M |21 =" =2, =0}.

Theorem 5.1 (Kiinneth formula for Koszul homology). Let C.,d, be a chain complex of A-modules and
x € A. Then we have a short exact sequence

0 — Ho(z, Hy(C.)) = Hy(z,C.) = Hi(z, Hyi—1(C.)) = 0
Proof. A calculation involving double complexes shows that the total complex Tot®(C, @4 K (z)) is just

Tot™(C. @4 K (2))g+1 = C1 © Cy

d —1)ix
Aq+1 = ( qdi-l ( dj )

We end up with the short exact sequence of chain complexes

with differential

0— C, — Tot®(C,®4 K(x)) = C.[-1] = 0

where C,[—1] denotes the complex C, shifted in degree by —1 and same differential (that is, C,[—1] =
Cy—1). This short exact sequence is given explicitly by

l | |

0 Cor1 Coqt1® Cy Cy 0
lqurl lAqul ldq
0 Cq Cq @qul e qul — 0

| | |

One checks that the squares commute and hence this is indeed a short exact sequence of chain
complexes. Now taking homology gives us a long exact sequence

s Hy1 (C-1)) =2 H,(C) —— Hy(z,C.) —— Hy(C.]-1]) 2% H, 1(C) —— ...

.

which simplifies to
s Sq
. — H,(C,) —— H,(C,) — H,(z,C.) — H,1(C) = H,_1(C) — ...
We now claim that the connecting homomorphisms 4, are just multiplication by (—1)%z. To see this we
trace the steps of the snake lemma. Let ¢ € C,,41[—1] = C,, be a cycle (that is, d,,(¢c) = 0). Then c is the

image of (¢/,¢) € Cpy1 & Cy, for some ¢’ € Cp1q. Applying A, 1 to (¢, ¢) we get

(dpi1(c) + (=1)"zc,dn(c)) = (dny1 () + (=1)"zc,0) € Cp, ® Cp_1,



since c¢ is a cycle. Then by construction of the connecting homomorphism on homology, we have that
dq([e]) = [dg+1() + (=1)%xc] = (—1)%z[c], since [dp4+1(c')] = 0 as dy41(¢) is a boundary. This proves
our claim. Hence from the long exact sequence above, we get a short exact sequence

H,(C, _
0 ;ch((C.)) Hy(z,C.) —— {[c] € Hy—1(C.) | |z[c] =0} —— 0
But this is just the short exact sequence in question, by the remark before the theorem. O

Corollary 5.2. Let x € A and C, a chain complex of A-modules. Then the Koszul homology Hy(x,C.)
is annihilated by x.

Proof. The leftmost map in the above short exact sequence is given explicitly by

L* . Hq(co)

L oH,(C) — Hy(z,C.), [cq] +2Hy(C.) — [(cq,0)]

where ¢, is a cycle. Let [(¢g,cq-1)] € Hy(x, C,) for some cycle (¢q,co—1) € Cy ® Cy_q. This gives
(0,0) = A(cqs cq—1) = (dg(cq) + (—1) w1, dg—1(cq—1)).
It follows that [(c4,cq—1)] = [(cq,0)] + [0, cq—1)] = ¢*([cq] + xH,4(C.)) + [(0,¢4—1)]. Hence
w((cqy cq—1)] = " (zleq] + aHy(C.)) +[(0,2¢4-1)] = 0+ (=1)T7[(0, dy(cq))-

But now Ag11(0,¢4) = ((—1)%cq, dg(cq)) and so z[(cq,cq-1)] = (=1)7 [Ag41(0, ¢4)] — [(2¢q,0)]. The
first term is zero since Ay4+1(0,¢q) is a boundary, and we have already showed that the second term is
Z€ro. O

Corollary 5.3. Let xy,...,z, € A and let C, be a chain complex of A-modules. Then the ideal
(x1,...,2n) of A annihilates the Koszul homology Hy(z1,. .., 2n,C.).

Proof. This follows from Corollary 5.2 together with the commutativity and associativity of the total
complex associated to a tensor double complex. O

Definition 5.4 (Regular sequence). Let M be an A-module. A sequence x1,...,z, € A is M-regular if
(1) M/(x1,...,20)M #0;
(2) z7 is a nonzero divisor of M; and
(3) «; is a nonzero divisor of M/(z1,...,x;—1)M for 2 <i <n.

Theorem 5.4. (1) Let M be an A-module and x1,...,x, an M-reqular sequence. Then the Koszul
cohomology vanishes: Hy(z1,...,2n, M) =0 for all p > 0.

(2) If A,m is a Noetherian local ring, M a finite A-module, 1, ...,x, € m and Hi(z1,...,2,, M) =0,
then x1,...,%y, s an M-reqular sequence.

Proof. (1) By induction on n > 1. If n = 1, Hy(z1, M) is the homology of the complex

0= MEB M0

and hence Hy(z1, M) = 0 for p > 2 and Hp(z1, M) = ker(z1) = 0 since z1 is M-regular by assumption.
Now let n > 1. Let C, be the complex M ®4 K(z1,...,2n-1). Then Hy(z1,...,2n, M) = Hp(zp, C.).
Hence by Theorem 5.1 we have a short exact sequence

0— Ho(fﬂn, Hp(C,)) — Hp(l'l, A ) M) — Hl(l’n, Hp_l(C,)) —0



By definition, H,(C,) = Hp(z1,...2n_1, M) which is zero for p > 0 by induction. Thus from the short
exact sequence we see that Hy(z1,...,%,, M) =0 for p > 1 since the terms on the left and on the right
vanish. Now for p = 1, the left most term still vanishes, hence we have

Hy(z1,...,2n, M) ~ Hi(xy, Hy(Tn, ..., Tn_1, M)).
The latter is equal to the 1st homology of the complex
0— M/(x1,...,00 )M 2% M/(21,...,2,1)M =0
which is zero, since z,, is M/(x1,...,2,-1)M-regular.

(2) We again proceed by induction on n > 1. The result is trivial for n = 1. Let n > 1 and again let
C, be the complex M ® 4 K(z1,...,2,—1). By the proof of Theorem 5.1, we have an exact sequence

Hy(C.) ==+ Hy(C.,) = Hy(zn,C.) = Hy (21, ..., 20, M) =0

Hence we have that Hy(C,) = z,H;(C.). Now since A is Noetherian and M is finite, H,(C,) =
Hy(z1,...,2p—1, M) is afinite A-module. Since z,, € m, we get Hy(x1,...,2Zn—1, M) = 0 from Nakayama’s
Lemma. Thus by induction, z1,...,z,—1 is an M-regular sequence. Now using Theorem 5.1 again, we
have a short exact sequence

0— HQ(.Z‘n,Hl(C,)) — Hl(l‘l, - ,xn,M) — Hl(l‘n,Ho(C,)) —0

where the two leftmost terms are zero. Thus Hy(zy, Ho(C.)) = H1(zn, M/(21,...,2n—1)M) = 0, which

implies x,, is M/(z1,...,2,—1)M-regular and thus (x1,...,2,) is an M-regular sequence. O
Corollary 5.5. Ifxy,...,x, € A is a reqular sequence, the Koszul complex K(x1,...,x,) is a finite free
resolution of Af(x1,...,2n).

Proof. This follows from Theorem 5.4, Part 1 and the fact that Ho(xy,...,2,,A) = A/(21,...,2,) O

5.1 Hilbert’s syzygy theorem

Let A = k[x1,..., x5 be the usual graded polynomial ring and M a finite graded A module. Assume M
is generated by homogeneous generators myq,...,m,, of degree d; (. For a nonnegative integer d, we put
A(d) for the A-module A but with shifted grading by —d. This means that A(—d) is the graded module
with jth graded piece A(—d); = Aj_q4. (Thus the generator 1 € A has degree d in A(—d)). We have a
surjective homomorphism of degree 0

To
do: @A(*d@o) — M giVGIl by 1, — m;,
=1

where e; := (0,...,1,...,0) with 1 in the ith place. On the left, the grading is .2, A(—d;o) =
@jzo(@gl A(—d;0);), so that 1; has degree d; g. This makes dy a homomorphism of graded A-modules.
The kernel K := ker(dp) is a homogeneous submodule, and since A is Noetherian, it is generated by finitely
many homogeneous elements. Replace M with K and repeat the above process. Iterating this, we get a
graded free resolution of M

Tn—1

Tn dn T0 do
= P A(—din) = P A(—din—1) = - > P A(=dig) = M =0
i=1 i=1 i=1

If we pick a minimal set of generators at each step, the resolution we end up with is called a minimal
graded free resolution of M. In this case, I claim that im(d,) C (21,...,2s) @27 A(=d;n_1) for all
n > 1. To see this, suppose not. Since im(d,) = ker(d,—1) is a homogeneous ideal, we can find a



homogeneous element (f1,..., fr, _,) € im(d,) that is not in (z1,...,zs) @; 7" A(—d;n—1). Because this
element is homogeneous, each of the f; is a homogeneous polynomial and hence it must be the case that
fi is a nonzero constant for some i. Without loss of generality, we may assume that f; = ¢ € k*. Hence
(1,7 fo, ..oy f ) € ker(dy,—1). Thus

Tn—1

dn—1(e1) = Z ™t fidn—1(e;).

i=2
However, we chose the d,,—1(e;) to be a minimal set of generators of ker(d,,_2), so this is a contradiction.

Theorem 5.6 (Hilbert’s syzygy theorem). Let A = k[x1,...,xs] be the usual graded polynomial ring and
M a finite graded A-module. Then M has a finite free resolution of length at most s.

Proof. We first take M = k = A/(z1,...,zs) viewed as an A-module via the trivial action. Clearly,
r1,...,Ts is a regular sequence in A and hence by the corollary to Theorem 5.2, the Koszul complex
K(xy,...,xs) is a finite free resolution of k of length n + 1.

Now let M be arbitrary. Pick a minimal graded free resolution of M as constructed above

-~-—>Fnﬂ>Fn_1—>-~-—>F1—>F0—>M

where F), is free of rank r,. Since the resolution is minimal, im(d,,) C (x1,...,25)F,—1 for all n > 1.
Thus we have a commutative diagram

dn 1 n
.—>Fn+1®AkL®>Fn®Akﬂ>Fn_1®Ak*>

FoF Lk

S kT kT 0 krnet ————

(=)

Hence by definition we have that
Tor (M, k) = k™,

and so dimy, Tor’}(M, k) = r,. But we can also compute Tor’ (M, k) using a projective resolution of k.
In particular, we can use the finite free resolution of k given by the Koszul complex as outlined at the
beginning. This resolution has length s+ 1 and hence Torf(M ,k) =0 for all n > s+ 1. In particular we
have r, =0 for all n > s+ 1 giving us the result. O

5.2 Regular local rings

Let A, m, k be a Noetherian local ring. Let {Z1,...,T,} be generators of m/m? as an A-module and hence
as a k-vector space. Let E := Az + --- + Ax,. Then m = E +m?. Thus by Nakayama, £ = m. So if
we pick {Z1,...,T,} to be a k-basis for m/m? we end up with a minimal set of generators of m and vice
versa.

Definition 5.5. We define the embedding dimension of A, denoted by embdim A to be the minimal
number of generators of m; equivalently emb dim A = dimy, m/m?.

We always have dim A = ht m < emb dim A by Krull’s height theorem.
Definition 5.6. We say that a Noetherian local ring A is a regular local ring if dim A = emb dim A.
Lemma 5.7. Let A,m be a Noetherian local ring and let x4, ...,x, € m. Then we have

dim(A/(z1,...,2,)) > dimA —n

Equality holds if x1,...,x, is a reqular sequence.



Proof. Let d := dim(A/(x1,...,2,)) = 6(A/(z1,...,2,)) by the fundamental theorem of dimension
theory. Thus there exists a m/(x1,...,2z,)-primary ideal (gy,...,7;) of A/(x1,...,z,) that is gener-
ated by d elements. Then m/(x1,...,2,) is minimal over (7,,...,7,;) and hence m is minimal over
(1, TnyY1,---,Yd). So dimA = htm < n + d by Krull’s height theorem. Rearranging, we get
d>dimA —n.

If zq,...,x, is a regular sequence, we prove by induction on n that dim(A/(z1,...,z,)) < dim A —n.
Recall that for any ring A and any ideal I of A, we have dim(A/I) < dim A — htI. Now for n = 1,
dim(A/xA) < dim A—ht(z). But since x is regular, it is a nonzerodivisor of A and so ht(z) = 1 by Krull’s

A/(m1,.‘.7wn,1)
T A/ (T1,Tn—1)’

Hauptidealsatz. Now notice that A/(z1,...,2z,) = where T,, denotes the image of x,, in

A/(x1,...,%n—1). Since x1,...,z, is a regular sequence, T,, is a nonzerodivisor of A/(z1,...,2,—1) and
thus again by Krull’s Hauptidealsatz, we have dim(A/(z1,...,zy)) < dim(A/(z1,...,2n-1)) — 1 and we
are done by induction. O

Corollary 5.8. Let A,m be a Noetherian local and M a finite A-module. If x1,...,z, € m is an

M -reqular sequence then
dim(M/(z1,...,2n)M)=dim M —r

Proof. By definition, we have dim M = dim(A/ Ann M) and dim(M/(z1,...,2,)M) = dim(%)
where T; denotes the image of x; in A/ Ann M. Then by Lemma 5.7, it suffices to show that Ty, ..., T, is
a regular sequence in A/ Ann M. We do this by induction on n > 1. Let & be M-regular. Suppose that
Ta =0in A/ Ann M hence za € Ann M. That is for all m € M, xam = 0. But z is M-regular, so am = 0
for all m € M and so @ =0 in A/ Ann M, showing that T is regular in A/ Ann M. Now let z1,...,2, be
an M-regular sequence, then xo, ..., z, is an M/xy M-regular sequence, and so by induction, Ts, ..., T,
is a regular sequence in A/;%M. But by the case n = 1, T; is regular in A/ Ann M and so we are
done. O

Note that the above shows that for A, m local Noetherian and M finite, the dimension of M is always
greater or equal to the maximum length of an M-regular sequence contained in m. This is a notion that
we will encounter again soon.

Lemma 5.9. Let A,m, k be a reqular local ring of dimensionn. Letxy,...,x, € m be linearly independent
as elements of the k-vector space m/m? (hence r < n), Then A/(z1,...,x,) is a reqular local ring and

dim(A/(z1,...,2,)) =n—r.

Proof. We know by Lemma 5.4 that dim(A/(z1,...,2,)) > n —r. Now since Zy,...,T, are linearly
independent, we can extend to a basis {Z1,..., %y, Tri1,-..,%n} of m/m2. Then x1,...,2, is a minimal
generating set of m and hence

embdim(A/(z1,...,z.)) =n—r and dim(A/(z1,...,z;)) =htm/(x1,...,2,) <n-—7r
by Krull, as m/(x1,...,x,) is generated by the images of x,y1,...,Z,. O
Theorem 5.10. Let A be a regular local ring. Then A is an integral domain.

Proof. We argue by induction on n = dimA = embdim A > 0. If n = 0, then m = 0 and hence A is a
field. If n = 1, then m = Az and since dim A = 1, we can find a prime 8 C m. Then for y € B, y = ax
for some a € A. But az € B and clearly = ¢ . Hence P = 23 and so by Nakayama, P =0 so A is a
domain. Now let n > 1. Let %Bq,...,B, be the minimal primes of A. Then since dim A > 1, m is not
contained in any of m?,%B1,%,. So by prime avoidance, we can find x € m, that i snot contained in any
of m?,91,%,. Then Z € m/m? is nonzero and so by Lemma 5.5, A; := A/xA is a regular local ring of
dimension n — 1. By induction we have that A; is a domain and hence Az is a prime ideal of A and so
must contain a minimal prime 93; for some i. Since by construction = ¢ 93;, the same argument as in the
case n = 1, gives that PB; = 0 and so A is a domain. O

Theorem 5.11. Let A,m, k be a d-dimensional Noetherian local ring. Then equivalent conditions:



(1) A is regular
(2) gr,,(A) is isomorphic as a graded ring to the polynomial ring k[z1,...,x4] graded as usual.

Proof. For 1 = 2, note that since A is regular of dimension d, m is generated by d elements, say &1, ..., &4
Let £; denote the image of & in m/m?. Then gr,, (A) = k[¢,, ..., &,] and we have a surjective graded ring
homomorphism

P k[xlv N .,,Id] - k[gla ce 7gd]
Let I := kerp. Then I is a homogeneous ideal, and hence ¢ induces an isomorphism of graded rings.
Suppose for contradiction that I is nonzero. Then we can find a nonzero homogeneous element f € I, =
INklxy,..., x4, Now

length 4 (gr,,(A)) = length 4 ((k[x1, ..., 24]/I)n)

= dimp(k[z1, .. -, zaln) — dimy(In) = (” ;f; 1) — dimy (1)

For n > r, dimg((f)n) = dimg (k[z1, ..., 2dln—r) = ("ﬁ;l:;*l). And since f € I, dimg((f)) < dimg(I,),

S0
n+d-1 ntd—r—1
< _
length 4 (gr,,(A)) < < d—1 ) ( d—1 )

which is a polynomial in n of degree d — 2 for large enough n. In other words, the Hilbert polynomial
of gr.,(A) has degree at most d — 2 and so (recall sections 4.1 and 4.2), the Samuel function of A has
degree at most d — 1. But by the fundamental theorem, the degree of the Samuel function must equal
the dimension of A which is d. This gives a contradiction.

For 2 = 1, if gr,,(A) is isomorphic to k[x1,...,z4] as graded rings, then m/m? is generated as a
k-vector space by d elements. Hence

d=dimA <embdimA <d
and so we must equality. O

Theorem 5.11 gives an alternative proof of Theorem 5.10: If A, m, & is regular local, then by 5.7, the
associated graded gr,,(A) is a polynomial ring and hence an integral domain. Let a,b € A be nonzero.
Then by Krull’s intersection theorem (Theorem 3.5), since a and b are nonzero, we can find integers
n,m > 1 such that @ € m"™! —m™ and b € m™~! — m™. Then the elements @ € m"~!/m" and
b € m™~1/m™ are nonzero in gr,,(A4). Hence ab € m"+™=2/m"*™m~1 is nonzero. Hence ab ¢ mntm~!
and thus ab cannot be zero in A.
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