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5 Koszul complex and regular local rings

We start with two alternative definitions of the Koszul complex. Recall that a chain complex of R-modules
M q, dMq is a sequence of R-modules Mi and homomorphisms

· · · →Mm+1

dMm+1−−−→Mm
dMm−−→Mm−1 → . . .

such that the composite of any two consecutive maps is zero. Given two chain complexes of R-modules
M q, dMq and N q, dNq , we can form the double complex M q⊗A N q

M0 ⊗A N2 M1 ⊗A N2 M2 ⊗A N2

M0 ⊗A N1 M1 ⊗A N1 M2 ⊗A N1

M0 ⊗A N0 M1 ⊗A N0 M2 ⊗A N0

where the horizonal differentials are given by δh := dMm ⊗ 1: Mm⊗ANn →Mm−1⊗ANn and the vertical
differentials are given by δv := (−1)m1⊗ dNn : Mm ⊗A Nn → Mm ⊗A Nn−1. Because of this we see that
each square in the double complex, anti-commutes. This is done on purpose since it allows to define a
chain complex from this double complex as follows. We define the total complex Tot⊕(M q⊗A N q) of the
above tensor double complex to have degree d ≥ 0 part

Tot⊕(M q⊗A N q)d =
⊕

m+n=d

Mm ⊗A Nn

and differential δ := δh + δv. The fact that the squares in the double complex anti-commute means
that δ2 = 0 and so this is indeed a complex. Visually this is just taking diagonal slices in our double
complex along lines of slope −1 and the differentials map one diagonal slice to the previous one in
the only way possible, that is, in each summand you go down and to the left. Here a useful remark
is that the total complex is commutative in the sense that Tot⊕(M q⊗A N q) and Tot⊕(N q⊗A M q) are
isomorphic as chain complexes. It is also associative in the sense that Tot⊕(Tot⊕(M q⊗A N q)⊗A P q) and
Tot⊕(M q⊗A Tot⊕(N q⊗A P q)) are isomorphic as chain complexes.

Definition 5.1 (Koszul complex 1). Let A be a ring and x ∈ A. We define the Koszul complex K(x) to
be the complex

0→ A
x−→ A→ 0

given by multiplication by x. Now for x1, . . . , xn ∈ A, we define the Koszul complex K(x1, . . . , xn)
inductively by K(x1, x2) := Tot⊕(K(x1)⊗A K(x2)), and

K(x1, . . . , xn) := Tot⊕(K(x1, . . . , xn−1)⊗A K(xn)).

This definition will be extremely useful when proving stuff about Koszul homology that we define
later.

Definition 5.2 (Koszul complex 2). Given x1, . . . , xn ∈ A, we define the Koszul complex

· · · → Kn → Kn−1 → · · · → K1 → K0 → 0

where K0 := A and for p ≥ 1 we have Kp :=
∧p

(
⊕n

i=1Aei), the pth exterior algebra of the free A-module
of rank n, which is the free A-module of rank

(
n
p

)
with basis {ei1 ∧ · · · ∧ eip | 1 ≤ i1 < i2 < · · · < ip ≤ n}

We leave the equivalence of the two definitions as an exercise.
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Definition 5.3 (Koszul homology). Let M be an A-module and x1, . . . , xn ∈ A. The Koszul homology
with coefficients in M is defined by

Hp(x1, . . . , xn,M) := Hp(M ⊗A K(x1, . . . , xn))

For a chain complex C q of A-modules, we define the Koszul homology with coefficients in C q to be

Hp(x1, . . . , xn, C q) := Hp(Tot⊕(C q⊗A K(x1, . . . , xn))).

Remark. An easy check shows that we always have

H0(x1, . . . , xn,M) = M/(x1, . . . , xn)M

Hn(x1, . . . , xn,M) = {ξ ∈M | x1ξ = · · · = xnξ = 0}.

Theorem 5.1 (Künneth formula for Koszul homology). Let C q, d q be a chain complex of A-modules and
x ∈ A. Then we have a short exact sequence

0→ H0(x,Hq(C q))→ Hq(x,C q)→ H1(x,Hq−1(C q))→ 0

Proof. A calculation involving double complexes shows that the total complex Tot⊕(C q⊗A K(x)) is just

Tot⊕(C q⊗A K(x))q+1 = Cq+1 ⊕ Cq

with differential

∆q+1 :=

(
dq+1 (−1)qx

0 dq

)
We end up with the short exact sequence of chain complexes

0→ C q→ Tot⊕(C q⊗A K(x))→ C q[−1]→ 0

where C q[−1] denotes the complex C q shifted in degree by −1 and same differential (that is, Cq[−1] =
Cq−1). This short exact sequence is given explicitly by

0 Cq+1 Cq+1 ⊕ Cq Cq 0

0 Cq Cq ⊕ Cq−1 Cq−1 0

dq+1 ∆q+1 dq

One checks that the squares commute and hence this is indeed a short exact sequence of chain
complexes. Now taking homology gives us a long exact sequence

. . . Hq+1(C q[−1]) Hq(C q) Hq(x,C q) Hq(C q[−1]) Hq−1(C q) . . .
δq δq−1

which simplifies to

. . . Hq(C q) Hq(C q) Hq(x,C q) Hq−1(C q) Hq−1(C q) . . .
δq δq−1

We now claim that the connecting homomorphisms δq are just multiplication by (−1)qx. To see this we
trace the steps of the snake lemma. Let c ∈ Cn+1[−1] = Cn be a cycle (that is, dn(c) = 0). Then c is the
image of (c′, c) ∈ Cn+1 ⊕ Cn for some c′ ∈ Cn+1. Applying ∆n+1 to (c′, c) we get

(dn+1(c′) + (−1)nxc, dn(c)) = (dn+1(c′) + (−1)nxc, 0) ∈ Cn ⊕ Cn−1,
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since c is a cycle. Then by construction of the connecting homomorphism on homology, we have that
δq([c]) = [dq+1(c′) + (−1)qxc] = (−1)qx[c], since [dn+1(c′)] = 0 as dn+1(c′) is a boundary. This proves
our claim. Hence from the long exact sequence above, we get a short exact sequence

0
Hq(C q)
xHq(C q) Hq(x,C q) {[c] ∈ Hq−1(C q) | |x[c] = 0} 0

But this is just the short exact sequence in question, by the remark before the theorem.

Corollary 5.2. Let x ∈ A and C q a chain complex of A-modules. Then the Koszul homology Hq(x,C q)
is annihilated by x.

Proof. The leftmost map in the above short exact sequence is given explicitly by

ι∗ :
Hq(C q)
xHq(C q) −→ Hq(x,C q) , [cq] + xHq(C q) 7→ [(cq, 0)]

where cq is a cycle. Let [(cq, cq−1)] ∈ Hq(x,C q) for some cycle (cq, cq−1) ∈ Cq ⊕ Cq−1. This gives

(0, 0) = ∆(cq, cq−1) = (dq(cq) + (−1)q−1xcq−1, dq−1(cq−1)).

It follows that [(cq, cq−1)] = [(cq, 0)] + [0, cq−1)] = ι∗([cq] + xHq(C q)) + [(0, cq−1)]. Hence

x[(cq, cq−1)] = ι∗(x[cq] + xHq(C q)) + [(0, xcq−1)] = 0 + (−1)q−1[(0, dq(cq)).

But now ∆q+1(0, cq) = ((−1)qxcq, dq(cq)) and so x[(cq, cq−1)] = (−1)q−1[∆q+1(0, cq)] − [(xcq, 0)]. The
first term is zero since ∆q+1(0, cq) is a boundary, and we have already showed that the second term is
zero.

Corollary 5.3. Let x1, . . . , xn ∈ A and let C q be a chain complex of A-modules. Then the ideal
(x1, . . . , xn) of A annihilates the Koszul homology Hq(x1, . . . , xn, C q).

Proof. This follows from Corollary 5.2 together with the commutativity and associativity of the total
complex associated to a tensor double complex.

Definition 5.4 (Regular sequence). Let M be an A-module. A sequence x1, . . . , xn ∈ A is M -regular if

(1) M/(x1, . . . , xn)M 6= 0;

(2) x1 is a nonzero divisor of M ; and

(3) xi is a nonzero divisor of M/(x1, . . . , xi−1)M for 2 ≤ i ≤ n.

Theorem 5.4. (1) Let M be an A-module and x1, . . . , xn an M -regular sequence. Then the Koszul
cohomology vanishes: Hp(x1, . . . , xn,M) = 0 for all p > 0.

(2) If A,m is a Noetherian local ring, M a finite A-module, x1, . . . , xn ∈ m and H1(x1, . . . , xn,M) = 0,
then x1, . . . , xn is an M -regular sequence.

Proof. (1) By induction on n ≥ 1. If n = 1, Hp(x1,M) is the homology of the complex

0→M
x1−→M → 0

and hence Hp(x1,M) = 0 for p ≥ 2 and Hp(x1,M) = ker(x1) = 0 since x1 is M -regular by assumption.
Now let n > 1. Let C q be the complex M ⊗A K(x1, . . . , xn−1). Then Hp(x1, . . . , xn,M) = Hp(xn, C q).
Hence by Theorem 5.1 we have a short exact sequence

0→ H0(xn, Hp(C q))→ Hp(x1, . . . , xn,M)→ H1(xn, Hp−1(C q))→ 0
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By definition, Hp(C q) = Hp(x1, . . . xn−1,M) which is zero for p > 0 by induction. Thus from the short
exact sequence we see that Hp(x1, . . . , xn,M) = 0 for p > 1 since the terms on the left and on the right
vanish. Now for p = 1, the left most term still vanishes, hence we have

Hp(x1, . . . , xn,M) ' H1(xn, H0(xn, . . . , xn−1,M)).

The latter is equal to the 1st homology of the complex

0→M/(x1, . . . , xn−1)M
xn−−→M/(x1, . . . , xn−1)M → 0

which is zero, since xn is M/(x1, . . . , xn−1)M -regular.

(2) We again proceed by induction on n ≥ 1. The result is trivial for n = 1. Let n > 1 and again let
C q be the complex M ⊗A K(x1, . . . , xn−1). By the proof of Theorem 5.1, we have an exact sequence

H1(C q) −xn−−−→ H1(C q)→ H1(xn, C q) = H1(x1, . . . , xn,M) = 0

Hence we have that H1(C q) = xnH1(C q). Now since A is Noetherian and M is finite, H1(C q) =
H1(x1, . . . , xn−1,M) is a finiteA-module. Since xn ∈ m, we getH1(x1, . . . , xn−1,M) = 0 from Nakayama’s
Lemma. Thus by induction, x1, . . . , xn−1 is an M -regular sequence. Now using Theorem 5.1 again, we
have a short exact sequence

0→ H0(xn, H1(C q))→ H1(x1, . . . , xn,M)→ H1(xn, H0(C q))→ 0

where the two leftmost terms are zero. Thus H1(xn, H0(C q)) = H1(xn,M/(x1, . . . , xn−1)M) = 0, which
implies xn is M/(x1, . . . , xn−1)M -regular and thus (x1, . . . , xn) is an M -regular sequence.

Corollary 5.5. If x1, . . . , xn ∈ A is a regular sequence, the Koszul complex K(x1, . . . , xn) is a finite free
resolution of A/(x1, . . . , xn).

Proof. This follows from Theorem 5.4, Part 1 and the fact that H0(x1, . . . , xn, A) = A/(x1, . . . , xn)

5.1 Hilbert’s syzygy theorem

Let A = k[x1, . . . , xs] be the usual graded polynomial ring and M a finite graded A module. Assume M
is generated by homogeneous generators m1, . . . ,mr0 of degree di,0. For a nonnegative integer d, we put
A(d) for the A-module A but with shifted grading by −d. This means that A(−d) is the graded module
with jth graded piece A(−d)j = Aj−d. (Thus the generator 1 ∈ A has degree d in A(−d)). We have a
surjective homomorphism of degree 0

d0 :

r0⊕
i=1

A(−di,0) −→M given by 1i 7→ mi,

where ei := (0, . . . , 1, . . . , 0) with 1 in the ith place. On the left, the grading is
⊕r0

i=1A(−di,0) =⊕
j≥0(

⊕r0
i=1A(−di,0)j), so that 1i has degree di,0. This makes d0 a homomorphism of graded A-modules.

The kernelK := ker(d0) is a homogeneous submodule, and since A is Noetherian, it is generated by finitely
many homogeneous elements. Replace M with K and repeat the above process. Iterating this, we get a
graded free resolution of M

· · · →
rn⊕
i=1

A(−di,n)
dn−→

rn−1⊕
i=1

A(−di,n−1)→ · · · →
r0⊕
i=1

A(−di,0)
d0−→M → 0

If we pick a minimal set of generators at each step, the resolution we end up with is called a minimal
graded free resolution of M . In this case, I claim that im(dn) ⊂ (x1, . . . , xs)

⊕rn−1

i=1 A(−di,n−1) for all
n ≥ 1. To see this, suppose not. Since im(dn) = ker(dn−1) is a homogeneous ideal, we can find a
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homogeneous element (f1, . . . , frn−1
) ∈ im(dn) that is not in (x1, . . . , xs)

⊕rn−1

i=1 A(−di,n−1). Because this
element is homogeneous, each of the fi is a homogeneous polynomial and hence it must be the case that
fi is a nonzero constant for some i. Without loss of generality, we may assume that f1 = c ∈ k×. Hence
(1, c−1f2, . . . , c

−1frn−1) ∈ ker(dn−1). Thus

dn−1(e1) =

rn−1∑
i=2

c−1fidn−1(ei).

However, we chose the dn−1(ei) to be a minimal set of generators of ker(dn−2), so this is a contradiction.

Theorem 5.6 (Hilbert’s syzygy theorem). Let A = k[x1, . . . , xs] be the usual graded polynomial ring and
M a finite graded A-module. Then M has a finite free resolution of length at most s.

Proof. We first take M = k = A/(x1, . . . , xs) viewed as an A-module via the trivial action. Clearly,
x1, . . . , xs is a regular sequence in A and hence by the corollary to Theorem 5.2, the Koszul complex
K(x1, . . . , xs) is a finite free resolution of k of length n+ 1.

Now let M be arbitrary. Pick a minimal graded free resolution of M as constructed above

· · · → Fn
dn−→ Fn−1 → · · · → F1 → F0 →M

where Fn is free of rank rn. Since the resolution is minimal, im(dn) ⊂ (x1, . . . , xs)Fn−1 for all n ≥ 1.
Thus we have a commutative diagram

. . . Fn+1 ⊗A k Fn ⊗A k Fn−1 ⊗A k . . .

. . . krn+1 krn krn−1 . . .

dn+1⊗1

'

dn⊗1

' '

0 0

Hence by definition we have that
TorAn (M,k) = krn ,

and so dimk TorAn (M,k) = rn. But we can also compute TorAn (M,k) using a projective resolution of k.
In particular, we can use the finite free resolution of k given by the Koszul complex as outlined at the
beginning. This resolution has length s+ 1 and hence TorAn (M,k) = 0 for all n > s+ 1. In particular we
have rn = 0 for all n > s+ 1 giving us the result.

5.2 Regular local rings

Let A,m, k be a Noetherian local ring. Let {x1, . . . , xr} be generators of m/m2 as an A-module and hence
as a k-vector space. Let E := Ax1 + · · · + Axr. Then m = E + m2. Thus by Nakayama, E = m. So if
we pick {x1, . . . , xr} to be a k-basis for m/m2 we end up with a minimal set of generators of m and vice
versa.

Definition 5.5. We define the embedding dimension of A, denoted by emb dimA to be the minimal
number of generators of m; equivalently emb dimA = dimk m/m

2.

We always have dimA = htm ≤ emb dimA by Krull’s height theorem.

Definition 5.6. We say that a Noetherian local ring A is a regular local ring if dimA = emb dimA.

Lemma 5.7. Let A,m be a Noetherian local ring and let x1, . . . , xn ∈ m. Then we have

dim(A/(x1, . . . , xn)) ≥ dimA− n

Equality holds if x1, . . . , xn is a regular sequence.
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Proof. Let d := dim(A/(x1, . . . , xn)) = δ(A/(x1, . . . , xn)) by the fundamental theorem of dimension
theory. Thus there exists a m/(x1, . . . , xn)-primary ideal (y1, . . . , yd) of A/(x1, . . . , xn) that is gener-
ated by d elements. Then m/(x1, . . . , xn) is minimal over (y1, . . . , yd) and hence m is minimal over
(x1, . . . , xn, y1, . . . , yd). So dimA = htm ≤ n + d by Krull’s height theorem. Rearranging, we get
d ≥ dimA− n.

If x1, . . . , xn is a regular sequence, we prove by induction on n that dim(A/(x1, . . . , xn)) ≤ dimA−n.
Recall that for any ring A and any ideal I of A, we have dim(A/I) ≤ dimA − ht I. Now for n = 1,
dim(A/xA) ≤ dimA−ht(x). But since x is regular, it is a nonzerodivisor of A and so ht(x) = 1 by Krull’s

Hauptidealsatz. Now notice that A/(x1, . . . , xn) = A/(x1,...,xn−1)
xnA/(x1,...,xn−1) , where xn denotes the image of xn in

A/(x1, . . . , xn−1). Since x1, . . . , xn is a regular sequence, xn is a nonzerodivisor of A/(x1, . . . , xn−1) and
thus again by Krull’s Hauptidealsatz, we have dim(A/(x1, . . . , xn)) ≤ dim(A/(x1, . . . , xn−1))− 1 and we
are done by induction.

Corollary 5.8. Let A,m be a Noetherian local and M a finite A-module. If x1, . . . , xn ∈ m is an
M -regular sequence then

dim(M/(x1, . . . , xn)M) = dimM − r

Proof. By definition, we have dimM = dim(A/AnnM) and dim(M/(x1, . . . , xn)M) = dim(A/AnnM
(x1,...,xn) )

where xi denotes the image of xi in A/AnnM . Then by Lemma 5.7, it suffices to show that x1, . . . , xn is
a regular sequence in A/AnnM . We do this by induction on n ≥ 1. Let x be M -regular. Suppose that
xa = 0 in A/AnnM hence xa ∈ AnnM . That is for all m ∈M , xam = 0. But x is M -regular, so am = 0
for all m ∈M and so a = 0 in A/AnnM , showing that x is regular in A/AnnM . Now let x1, . . . , xn be
an M -regular sequence, then x2, . . . , xn is an M/x1M -regular sequence, and so by induction, x2, . . . , xn
is a regular sequence in A/AnnM

x1
. But by the case n = 1, x1 is regular in A/AnnM and so we are

done.

Note that the above shows that for A,m local Noetherian and M finite, the dimension of M is always
greater or equal to the maximum length of an M -regular sequence contained in m. This is a notion that
we will encounter again soon.

Lemma 5.9. Let A,m, k be a regular local ring of dimension n. Let x1, . . . , xr ∈ m be linearly independent
as elements of the k-vector space m/m2 (hence r ≤ n), Then A/(x1, . . . , xr) is a regular local ring and

dim(A/(x1, . . . , xr)) = n− r.

Proof. We know by Lemma 5.4 that dim(A/(x1, . . . , xr)) ≥ n − r. Now since x1, . . . , xr are linearly
independent, we can extend to a basis {x1, . . . , xr, xr+1, . . . , xn} of m/m2. Then x1, . . . , xn is a minimal
generating set of m and hence

emb dim(A/(x1, . . . , xr)) = n− r and dim(A/(x1, . . . , xr)) = htm/(x1, . . . , xr) ≤ n− r

by Krull, as m/(x1, . . . , xr) is generated by the images of xr+1, . . . , xn.

Theorem 5.10. Let A be a regular local ring. Then A is an integral domain.

Proof. We argue by induction on n = dimA = emb dimA ≥ 0. If n = 0, then m = 0 and hence A is a
field. If n = 1, then m = Ax and since dimA = 1, we can find a prime P ( m. Then for y ∈ P, y = ax
for some a ∈ A. But ax ∈ P and clearly x /∈ P. Hence P = xP and so by Nakayama, P = 0 so A is a
domain. Now let n > 1. Let P1, . . . ,Pr be the minimal primes of A. Then since dimA > 1, m is not
contained in any of m2,P1,Pr. So by prime avoidance, we can find x ∈ m, that i snot contained in any
of m2,P1,Pr. Then x ∈ m/m2 is nonzero and so by Lemma 5.5, A1 := A/xA is a regular local ring of
dimension n− 1. By induction we have that A1 is a domain and hence Ax is a prime ideal of A and so
must contain a minimal prime Pi for some i. Since by construction x /∈ Pi, the same argument as in the
case n = 1, gives that Pi = 0 and so A is a domain.

Theorem 5.11. Let A,m, k be a d-dimensional Noetherian local ring. Then equivalent conditions:
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(1) A is regular

(2) grm(A) is isomorphic as a graded ring to the polynomial ring k[x1, . . . , xd] graded as usual.

Proof. For 1⇒ 2, note that since A is regular of dimension d, m is generated by d elements, say ξ1, . . . , ξd.
Let ξi denote the image of ξi in m/m2. Then grm(A) = k[ξ1, . . . , ξd] and we have a surjective graded ring
homomorphism

ϕ : k[x1, . . . , xd]→ k[ξ1, . . . , ξd]

Let I := kerϕ. Then I is a homogeneous ideal, and hence ϕ induces an isomorphism of graded rings.
Suppose for contradiction that I is nonzero. Then we can find a nonzero homogeneous element f ∈ Ir =
I ∩ k[x1, . . . , xd]r. Now

lengthA(grm(A)) = lengthA((k[x1, . . . , xd]/I)n)

= dimk(k[x1, . . . , xd]n)− dimk(In) =

(
n+ d− 1

d− 1

)
− dimk(In)

For n > r, dimk((f)n) = dimk(k[x1, . . . , xd]n−r) =
(
n+d−r−1

d−1

)
. And since f ∈ I, dimk((f)n) ≤ dimk(In),

so

lengthA(grm(A)) ≤
(
n+ d− 1

d− 1

)
−
(
n+ d− r − 1

d− 1

)
which is a polynomial in n of degree d − 2 for large enough n. In other words, the Hilbert polynomial
of grm(A) has degree at most d − 2 and so (recall sections 4.1 and 4.2), the Samuel function of A has
degree at most d − 1. But by the fundamental theorem, the degree of the Samuel function must equal
the dimension of A which is d. This gives a contradiction.

For 2 ⇒ 1, if grm(A) is isomorphic to k[x1, . . . , xd] as graded rings, then m/m2 is generated as a
k-vector space by d elements. Hence

d = dimA ≤ emb dimA ≤ d

and so we must equality.

Theorem 5.11 gives an alternative proof of Theorem 5.10: If A,m, k is regular local, then by 5.7, the
associated graded grm(A) is a polynomial ring and hence an integral domain. Let a, b ∈ A be nonzero.
Then by Krull’s intersection theorem (Theorem 3.5), since a and b are nonzero, we can find integers
n,m ≥ 1 such that a ∈ mn−1 − mn and b ∈ mm−1 − mm. Then the elements a ∈ mn−1/mn and
b ∈ mm−1/mm are nonzero in grm(A). Hence ab ∈ mn+m−2/mn+m−1 is nonzero. Hence ab /∈ mn+m−1

and thus ab cannot be zero in A.
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